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The 2nd Law of Thermodynamics

 Clausius inequality 
(1865)

Entropy increases 
as time progresses �S

total

� 0

Once or twice I have been provoked and asked the company 
how many of them could describe the Second Law of 
Thermodynamics. The response was cold. It was also negative. Yet 
I was asking something which is about the scientific equivalent 
of “Have you read a work of Shakespeare's?”  -- C. P. Snow

Entropy
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1 kT = 25 meV
  = 2.5 kJ/mol

1 natural unit of entropy 
equivalent to 

1 kT of thermal energy

T :  Temperature (ambient 300 Kelvin)
k  :  Boltzmann’s constant

average kinetic energy = 1.5 kT
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Entropy and Disorder
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No change in Entropy.  No Arrow of time.
Future, past and present are indistinguishable 
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Thermodynamic Equilibrium
The future is the direction of time in which entropy increases
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The (improved) 2nd Law of Thermodynamics

 Clausius inequality 
(1865)

he��S
totali = 1

 Jarzynski identity
(1997)
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equality only for 
reversible process

equality far-from-equilibrium
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What have we learned?

• There are exact, general relations valid far-from-equilibrium
• Trajectories are the primary objects (rather than states)

• Fluctuations matter
• Entropy change breaks time quantitatively reversal symmetry

• Directly relevant at small dissipation (less than about 10 kT)

• Information flow is as important as work and heat flow.
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ATP synthase

What are the fundamental operational principles of 
nano-scale machines?

Free Energy ATP = 20 kT 
                           = 0.5 eV

10

proton gradient

mechanical energy

chemical energy
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Coupled Systems & the
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Optimal thermodynamic control 
of molecular scale systems

Trap
Bead

Actuator 
    Bead

Pi
ze

oe
le

ct
ic

 
  A

ct
ua

to
r

Laser
 Trap

Trap Bead

Actuator Bead

RNA
Hairpin

time
le

ng
th

Which finite-time experimental protocols minimize dissipation?

Pro
toc

ol



Gavin E. Crooks / 29

Exact minimum dissipation protocols

13

Schmiedl & Seifert PRL (2007)Control trap position:
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Geometry of thermodynamic control

• Finite time thermodynamics with linear response friction tensor 
• Riemannian metric, minimum dissipation paths are geodesics

imposed by protocol Λ
Pex
� (t0) =

"
d�T

dt

#

t0

· ⇣
�
�(t0)

�
·

d�

dt

�

t0

nonequilibrium 
excess power

linear response
friction tensor

Prof. David Sivak
(Simon Fraser U.) 

F. Weinhold (1975), Peter Salamon and Steven Berry (1983), Sivak & Crooks PRL (2012)
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⇤(⌅)ij = �

Z 1

0
dt h⇥Xj(0)⇥Xi(t)i�

controllable parameters

p(x|�) = e�F (⇥)��E(x,⇥)

inverse temperaturefree energy

correlations of conjugate variablespositive semi-definite symmetric matrix
i.e. thermodynamic metric tenser

imposed by protocol Λ

Pex
� (t0) =

"
d�T

dt

#

t0

· ⇣
�
�(t0)

�
·

d�

dt

�

t0

nonequilibrium 
excess power

linear response
friction tensor

Combine linear response and thermodynamic geometry

Sivak & Crooks PRL (2012)
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Geometry of thermodynamic control

• Linear response friction tensor yields a Riemannian metric
• Metric tensor measures friction in control space

• Optimal (minimum dissipation) protocols:
‣ are geodesics in control space
‣ independent of protocol duration
‣ constant excess power
‣ dissipation inversely proportional to protocol duration
‣ minimize time for fixed dissipation
‣ minimize error for free energy calculations
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Rotskoff & Crooks (2015)
Sivak & Crooks (2012)

Peter Salamon and Steven Berry (1983)
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Thermodynamic Geometry of a Harmonic Trap

• Finite time thermodynamics with linear response friction tensor 
• Riemannian metric, minimum dissipation paths are geodesics

imposed by protocol Λ
Pex
� (t0) =

"
d�T

dt

#

t0

· ⇣
�
�(t0)

�
·

d�

dt

�

t0

nonequilibrium 
excess power

linear response
friction tensor

Michael 
DeWeese

Patrick 

Zulkowski

David Sivak 

Sivak & Crooks,  Phys. Rev. Lett., 2012
Zulkowski, Sivak, Crooks & DeWeese Phys. Rev. E 2012
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Hyperbolic geometry

GEOMETRY OF THERMODYNAMIC CONTROL PHYSICAL REVIEW E 86, 041148 (2012)

(a)

Time

High Low 

Small y0 Large y0

Large k Small k

(b) (c)
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FIG. 1. (Color) (a) Our model system. A particle (black dot)
diffusing in a harmonic potential with adjustable spring constant
k, position y0, and inverse temperature β = 1

kBT
(indicated by

thermometers). (b) Representative optimal protocols (orange and
red curves) plotted for two of the three control parameters, k and
β. An optimal protocol (e.g., red curve) results in the minimum
dissipation for any path taking the system from one particular state
(black square) to another (black triangle) in a fixed amount of time.
(c) A change of variables {β,k} → {z,x} [Eq. (34)] reveals that our
model system has an underlying structure described by hyperbolic
geometry, represented here as the Poincaré half-plane, in which
geodesics form half circles (orange curve) or vertical lines (red line).
(d) A piece of the (z,x) manifold may be isometrically embedded as
a saddle in R3. The distortions in each of these two optimal paths as
shown in panels (b) and (c) reflect the curvature of this manifold.

Integrating Eq. (13) from 0 to t0 proves the relative entropy
bounds the excess work from below. Since this quantity is
always nonnegative, so is the excess work; in fact, for any
finite-duration path visiting more than one point in parameter
space, it is strictly positive, yielding a well-behaved metric in
our geometrical formalism. See Ref. [36] for related results in
the special case of constant temperature. Note that, unlike our
modified definition for work, the naive definition

∫ tb
ta

dt Pex(t)
may be negative for particular protocols that vary β.

Calculation of the time correlation functions in Eq. (8) re-
quires knowledge of the dynamics for fixed control parameters.
We may write any solution to the equation of motion as a sum
yh + yp of a homogeneous part yh, which depends on the initial

conditions and is independent of F (t), and a particular part yp,
which has vanishing initial conditions but depends linearly on
F (t) (see, for instance, Theorem 3.7.1 in Ref. [37]). Explicitly,
we may write

yp(t) =
∫ t

0

[
y

(1)
h (s)y(2)

h (t) − y
(1)
h (t)y(2)

h (s)

y
(1)
h (s) d

ds
y

(2)
h (s) − y

(2)
h (s) d

ds
y

(1)
h (s)

]
F (s)
m

ds,

(16)

where y
(i)
h (t) for i = 1,2 are independent solutions of the

homogeneous equation. It follows immediately that

yh(t) = C1y
(1)
h (t) + C2y

(2)
h (t), (17)

where the constants C1,C2 are determined by initial conditions.
For Gaussian white noise F (t), it is easy to show that the
particular piece yp does not contribute to the equilibrium
time correlation function ⟨δXj (0)δXi(t)⟩. For simplicity and
without loss of generality, consider the correlation function
⟨δy(t)2δy(0)2⟩. Expanding this expression,

⟨δy(t)2δy(0)2⟩ = ⟨y(t)2y(0)2⟩ − ⟨y(t)2⟩⟨y(0)2⟩, (18)

and substituting y(t) = yh(t) + yp(t), we find

⟨δy(t)2δy(0)2⟩
= ⟨yh(t)2y(0)2⟩ + ⟨yp(t)2y(0)2⟩

− ⟨yh(t)2⟩⟨y(0)2⟩ − ⟨yp(t)2⟩⟨y(0)2⟩
+ 2[⟨yh(t)yp(t)y(0)2⟩ − ⟨yh(t)yp(t)⟩⟨y(0)2⟩]. (19)

Angled brackets denote an average over noise and initial
conditions. According to Eq. (16), the particular solution
yp does not depend on the initial conditions. It follows
immediately that

⟨yp(t)2y(0)2⟩ − ⟨yp(t)2⟩⟨y(0)2⟩ = 0. (20)

Furthermore, since yh depends only on the initial conditions
and is independent of the noise,

⟨yh(t)yp(t)y(0)2⟩ − ⟨yh(t)yp(t)⟩⟨y(0)2⟩ = 0, (21)

follows from the assumption that ⟨F (t)⟩ = 0. To summarize,

⟨δy(t)2δy(0)2⟩ = ⟨δyh(t)2δy(0)2⟩. (22)

For each of the time correlation functions needed to compute
the inverse diffusion tensor, it is generally true that yh(t) may be
substituted in the average for y(t). Without loss of generality,
let us assume for the moment that (ζ c)2 − 4km > 0. If we
define

r± = ζ c

2m
± 1

2

√(
ζ c

m

)2

− 4k

m
, (23)

then the homogeneous solution with initial conditions
{y(0),p(0) = mẏ(0)} is given by

yh(t) = y0 + p(0) + mr−(y(0) − y0)
m(r− − r+)

e−r+t

+ p(0) + mr+(y(0) − y0)
m(r+ − r−)

e−r−t , (24)

where y0 is the fixed trap position. For convenience, let
us define Y ≡ y − y0. Assuming that the initial conditions

041148-3

Thermodynamic Geometry of a Harmonic Trap

hot cold

stiff

loose

Zulkowski, Sivak, Crooks & DeWeese Phys. Rev. E 2012
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 The Ising Model
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⇤(⌅)ij = �

Z 1

0
dt h⇥Xj(0)⇥Xi(t)i�
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Energy-Energy

22

⇤(⌅)ij = �

Z 1

0
dt h⇥Xj(0)⇥Xi(t)i�
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Energy-Energy
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Magnetization-Magnetization
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Energy - Magnetization

25



Gavin E. Crooks / 29

Fast Marching for Finding Geodesics on a Mesh.

26

Fast Exact and Approximate Geodesics on Meshes
Vitaly Surazhsky
University of Oslo

Tatiana Surazhsky
University of Oslo

Danil Kirsanov
Harvard University

Steven J. Gortler
Harvard University

Hugues Hoppe
Microsoft Research

Abstract
The computation of geodesic paths and distances on triangle
meshes is a common operation in many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination” algorithm presented by Mitchell, Mount, and Pa-
padimitriou (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction
In this paper we present practical methods for computing both exact
and approximate shortest (i.e. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra algo-
rithm for shortest paths.
The computation of geodesic paths is a common operation in many
computer graphics applications. For example, parameterizing a
mesh often involves cutting the mesh into one or more charts
(e.g. [Krishnamurthy and Levoy 1996; Sander et al. 2003]), and
the result generally has less distortion and better packing efficiency
if the cuts are geodesic. Geodesic paths are used in segmenting a
mesh into subparts, as done in [Katz and Tal 2003; Funkhouser et al.
2004]. Mesh editing systems such as [Kobbelt et al. 1998] also use
geodesics to delineate the extents of editing operations. Simulating
fire on a mesh [Lee et al. 2001] also benefits from geodesics.
In addition, geodesic paths establish a surface distance metric,
which is an essential building block for many other techniques. For
example, radial-basis interpolation over a mesh requires calcula-
tion of geodesic distances, and is used in numerous applications
such as skinning [Sloan et al. 2001], mesh watermarking [Praun
et al. 1999], and the definition of surface vector fields [Praun et al.
2000]. Shape classification algorithms such as [Hilaga et al. 2001]
use Morse analysis of a geodesic distance field. Parameterization
metrics based on isomaps [Zigelman et al. 2002; Zhou et al. 2004;
Peyré and Cohen 2005] are also driven by geodesic distances.
In this paper we explore the problem of producing both exact and
approximate solutions for geodesic paths (and hence distances) on
triangle meshes (Figure 1). We present three contributions:
Exact algorithm We first present an efficient implementation of
the exact geodesic algorithm by Mitchell, Mount, and Papadim-
itriou (MMP) [1987]. Using a simple parameterization of the dis-

Figure 1: Geodesic paths from a source vertex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though, to our knowledge, it has never been done pre-
viously. We demonstrate that the algorithm’s worst case running
time of O(n2 log n) is pessimistic, and that in practice, the algo-
rithm runs in sub-quadratic time. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a
400K-triangle mesh in about one minute.
Approximation algorithmWe extend the algorithmwith a merg-
ing operation to obtain computationally efficient and accurate ap-
proximations with bounded error. In practice, the algorithm runs in
O(n log n) time even for small error thresholds.
Exact geodesic path between two points We show how to
efficiently obtain the exact solution to the “single source, single
destination” problem, by using a lower-bound property of our ap-
proximation algorithm to prune the frontier of the MMP algorithm.
In practice, we compute the shortest path between two points on a
1M-triangle mesh in just a few seconds.

2 Related work
The MMP algorithm [Mitchell et al. 1987] provides an exact solu-
tion for the “single source, all destination” shortest path problem
on a triangle mesh. Their algorithm partitions each mesh edge into
a set of intervals (windows) over which the exact distance compu-
tation can be performed atomically. These windows are propagated
in a “continuous Dijkstra”-like manner. They prove a worst case
running time of O(n2 log n). Unfortunately, as far as we know the
MMP algorithm has not been implemented previously and thus has
not made its way into practice.
An exact geodesic algorithm with worst case time complexity of
O(n2) was described by Chen and Han [1996] and partially imple-
mented by Kaneva and O’Rourke [2000]. We show that our MMP
implementation runs many times faster than that implementation.
Kapoor [1999] describes an algorithm for the “single source, sin-
gle destination” geodesic path between two given mesh vertices,
in O(n log2 n) time. This is a complicated method which calls as
subroutines many other complicated computational geometry algo-
rithms; it is unclear if this algorithm will ever be realized.
Approximate geodesics with guaranteed error bounds can be ob-
tained by adding extra edges into the mesh and running Dijkstra
on the one-skeleton of this augmented mesh [Lanthier et al. 1997].

Dijkstra Fast Marching Method
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Minimum Dissipation Protocol (Geodesics)
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Minimum Dissipation Protocol (Geodesics)
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Frontiers of geometric thermodynamics

3

The first term on the right vanishes, since Rπ = 0. Us-
ing Eq. 11a in the second term, we get a sum of two
terms: (1)

∑

i π̇i lnπi, which is equal to −dS/dt, and
(2) −

∑

i,k πiπ̇k lnπi, which vanishes by conservation of
normalization:

∑

k π̇k = 0. We thus arrive at

β⟨Q̇ex⟩ = −
dS

dt
+O(ϵ2), (16)

which implies that in the quasistatic limit (ϵ → 0, with
∆t ∝ ϵ−1), Eq. 2 becomes an equality:

∆S +

∫

dtβ(t)⟨Q̇ex⟩
qs
= 0 (17)

This result is a generalized Clausius equality for qua-
sistatic transitions between nonequilibrium steady states.
An equivalent result was obtained for overdamped
Langevin processes in Ref. [4, 18]. Eq. 17 implies that the
integral

∫

dtβ(t)⟨Q̇ex⟩ is independent of the quasistatic
path taken from A to B in λ-space, and therefore van-
ishes when the path is cyclic. (Interestingly, if Qhk is
defined as in Refs. [16, 17], then for cyclic paths this in-
tegral is described in terms of a geometric phase [25].)

Recall that reversible equilibrium processes, which sat-
isfy ∆S +

∫

dtβ⟨Q̇⟩ = 0, are characterized by zero en-
tropy production in the universe: any change in the sys-
tem’s entropy is balanced by a compensating change in its
surroundings. By analogy, in quasistatic nonequilibrium
processes, which satisfy Eq. 17, the entropy change of the
system, ∆S, is balanced by the excess entropy produced
in the reservoir,

∫

dtβ⟨Q̇ex⟩. (The total entropy pro-
duction in the reservoir diverges in the quasistatic limit,
∫

dtβ⟨Q̇⟩ → ∞, due to the continual flow of housekeep-
ing heat.) Moreover, just as a system remains arbitrarily
close to equilibrium during a reversible processes, a sys-
tem undergoing a quasistatic nonequilibrium transition
remains arbitrarily close to the nonequilibrium steady
state (∆p ∝ ϵ). In both cases, equilibrium and nonequi-
librium, the system retraces its path in the reverse order
when it is subjected to the reverse process λ : A ← B;
in this sense, there is no hysteresis. In view of these par-
allels, it is natural to think of quasistatic nonequilibrium
processes as the nonequilibrium analogues of reversible
equilibrium processes, as suggested by Oono and Pani-
coni [3].

Let us now move beyond the quasistatic limit, by in-
cluding the n = 2 term of Eq. 13 in the analysis. Starting
with Eq. 14, we obtain

β⟨Q̇ex⟩ = −
dS

dt
+
∑

i,j

Rij lnπi

∑

k,l

R+
jk

d

dt

(

R+
klπ̇l

)

(18)

in place of Eq. 16. Integrating with respect to time, we

obtain, after some simplifying steps (see SI),

∆S +

∫

dtβ⟨Q̇ex⟩

= ∆
∑

i,j

lnπiR
+
ij π̇j −

∫

dt
∑

i,j

πj
d lnπi

dt
R+

ij

d lnπj

dt
.

(19)

If we now assume that dλ/dt = 0 at the start and end
of the process, then the first term on the right of Eq. 19
vanishes. As the steady states π are determined by the
parameters λ, we can rewrite Eq. 19 in the form

∆S +

∫

dtβ⟨Q̇ex⟩ =

∫

dt λ̇
T
ξ(λ)λ̇

=

∫

dt λ̇
T
ζ(λ)λ̇,

(20)

where ζ = (ξ + ξT )/2 is the symmetric part of a matrix
ξ(λ) whose elements are

ξµν = −
∑

i,j

πj
∂ lnπi

∂λν
R+

ij

∂ lnπj

∂λµ
. (21)

Equation 20 provides the leading correction to Eq. 17,
and is the counterpart of analogous results for slow tran-
sitions between equilibrium states [12, 14, 15].
We now derive a Green-Kubo relation for the elements

of the matrix ζ(λ). Let us define a set of observables

Fµ
i (λ) =

∂ lnπi(λ)

∂λµ
, µ = 1, · · ·K. (22)

When the system is in the steady state πλ, its microstate
i(t) ∈ {1, 2, . . .N} fluctuates in time, hence so does each
Fµ(t) ≡ Fµ

i(t), around a mean value ⟨Fµ⟩λ = 0. Letting

⟨Fµ(0)F ν(t)⟩λ denote a correlation function evaluated in
the nonequilibrium steady state, the matrix elements ζµν
can be rewritten as (see SI for details):

ζµν(λ) =
1

2

∫ +∞

−∞

dt ⟨Fµ(0)F ν(t)⟩λ. (23)

This result relates an excess dissipation coefficient ζµν
to stationary fluctuations in the nonequilibrium steady
state. (Analogously, for near-equilibrium transitions
the friction tensor is determined by equilibrium fluctua-
tions [12].) We emphasize that the steady state in Eq. 23
may be far from thermal equilibrium.
As shown by Prost et al [26], and for general Markov

processes by Hänggi and Thomas [27], an expression sim-
ilar to Eq. 23 describes the linear response of a system
to small perturbations around a given steady state. By
contrast, our analysis applies to slow transitions between
two steady states that may differ substantially.
The left side of Eq. 2 (or Eq. 20) is the ensemble aver-

age of a quantity identified by Esposito et al [28, 29] as

Dibyendu Mandal,
Chris Jarzynski

Steady states

Alexander Berezhkovskii,
 Attila Szabo

Coordinate Dependent 
Diffusion

Patrick R. Zulkowski,
Michael R. DeWeese

6

-1 0 1 2
0

1

2

bUHlá 2L

-1 0 1 2
0

1

2

bUHlá 1.5L

-1 0 1 2
0

1

2

bUHlá 1L

-1 0 1 2

0

1

2

bUHlá 0L

FIG. 1. Continuous erasure protocol. The lefthand well of the
double-well potential merges with the right and the central
barrier lowers simultaneously as � decreases from 2 to 0.

IV. THE ERASURE MODEL

We consider the following model to represent a single
classical bit of information: an overdamped Brownian
colloidal particle di↵using in a one-dimensional double-
well potential in contact with a thermal bath of temper-
ature T [48, 49]. The wells are initially separated by a
potential barrier whose height is much larger than the
energy scale ��1 ⌘ k

B

T set by thermal fluctuations, en-
suring stability of memory. Explicitly, we may write the
potential as

U(x,�) ⌘ � 1

�
log

"
↵e�↵(x�1+�)

�
1 + e�↵(x�1+�)

�2+
↵e↵(x�1)

�
1 + e↵(x�1)

�2

#
,

(49)
where x is a dimensionless spatial coordinate and ↵ � 1.
Initially, � = 2 and there are two distinct wells and a
central barrier with height governed by ↵. As � decreases
to 0, the barrier height diminishes and the left-hand well
shifts to merge with the right-hand well.

The system is prepared so that the particle has equal
probability of being found in either well. This may be
achieved, for example, by selecting the initial position of
the particle to be at the midpoint of the potential bar-

rier and waiting a su�ciently long relaxation period [48].
After this relaxation period has elapsed the particle has
equal probability of being located to the left or right of
the origin. If the particle is found to the left (right) of
the origin, the memory value is defined to be 1 (0).
We are primarily interested in optimizing finite-time

erasure e�ciency over cyclic protocols for the classical
single bit model described above. In [37], constraining
the initial and final probability distributions forced the
optimal protocols to have jump discontinuities at the end
points. This was to be expected based on experience with
optimization in the context of stochastic thermodynam-
ics in general [31–33, 54, 55] and erasure e�ciency in
particular [56, 57]. These jump discontinuities warrant
caution when defining thermodynamic quantities such as
the average dissipated heat [37, 55].
When classical information is being erased, the di↵er-

ence in Shannon entropies of the final and initial prob-
ability distributions must satisfy 4S ⌘ S

f

� S
i

< 0,
which would allow us to define the erasure e�ciency
✏ ⌘ �4S/ (k

B

h�Qi⇤) as the ratio of this decrease in
Shannon entropy to the average heat hQi⇤ released into
the thermal bath [58, 59]. Taking k

B

⌘ 1, we see that

✏ =
1

1 + h4stoti⇤
cyc

/ (�4S)
, (50)

where

h4stoti⇤
cyc

= h�Qi⇤
cyc

+4S (51)

is the total average entropy production. Our goal will
be to minimize the total average entropy over protocols
while constraining 4S. The constraint forces us to op-
timize over protocols with jump discontinuities at the
endpoints.
We may express the total average entropy in terms

of the initial and final probability distributions as well
as the average work done over the erasure stage of the
cycle [37, 54]:

h4stoti⇤
cyc

= h�W i⇤
erase

�
Z

R
dx ⇢[�U + ln ⇢]

���
⌧

0
, (52)

where ⌧ is the duration of the erasure stage. This follows
from

h�W i⇤
reset

=

Z

R
⇢(x, ⌧)[�U(x, 0)� �U(x, ⌧)]. (53)

Using the approximation Eq. (37), we see that

h�W i⇤
erase

⇡
Z

⌧

0

dt ⇣(�(t))

✓
d�

dt

◆2

� ln

✓
Z
⌧

Z0

◆
. (54)

During the first (erasure) stage, the initial equilibrium
distribution transitions to a final nonequilibrium distri-
bution in which the system is overwhelmingly more likely
to have memory value 0. In the second (reset) stage, � is
brought instantaneously back to its original value while
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