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Origins: Fluctuation theorem: Evans et al. (1993) [50].
Evans-Searles transient fluctuation theorem: Evans and
Searles (1994) [52]. Gallavotti-Cohen fluctuation theo-
rem: Gallavotti and Cohen (1995) [54]. Fluctuation the-
orem, first use of terminology: Gallavotti (1996) [56].
Jarzynski equality: Jarzynski (1997) [58]. Crooks fluctu-
ation theorem: Crooks (1999) [74]. Hatano-Sasa fluctu-
ation theorem: Hatano and Sasa (2001) [87]. Feedback
Jarzynski equality: Sagawa and Ueda (2010) [195].

Reviews and expositions: For a gentle, modern intro-
duction see Spinney and Ford (2013) [223], and then
try reading some of the other reviews in the same
volume: Sagawa and Ueda (2013) [225], Reid et al.
(2013) [226], Gaspard (2013) [224]. See also Evans
and Searles (2002) [98], Harris and Schütz (2007) [159],
Seifert (2012) [219], Van den Broeck and Esposito
(2015) [228]. For reviews and expositions of non-
equilibrium single-molecule experiments see Hummer
and Szabo (2005) [132], Bustamante et al. (2005) [131],
Ritort (2006) [149], Ritort (2008) [181]. Other reviews
and expositions: Crooks (1999) [77], Maes (2003) [107],
Seifert (2008) [176], Kurchan (2009) [186], Martins et al.
(2025) [240]. Textbooks: Gallavotti (1999) [79], Peliti and
Pigolotti (2021) [234], Strasberg (2022) [235], Gaspard
(2023) [237], Limmer (2024) [239]

Foundations – Thermodynamics and statistical me-
chanics Efficiency of heat engines and the foundation
of thermodynamics: Carnot (1824) [2]; First law of ther-
modynamics: von Helmholtz (1847) [4]; Second law of
thermodynamics Thomson (Lord Kelvin) [5], Clausius
(1865) [8]; Entropy: Clausius (1865) [8]; Statistical
definition of entropy: Boltzmann (1872) [11], Boltzmann
(1898) [15], Planck (1901) [16], Gibbs (1902) [17],

∗Massively incomplete, hopelessly out-of-date, and only occasionally
updated.

Shannon (1948) [30], Jaynes (1957) [33], Jaynes
(1957) [32]; Maxwell-Boltzmann distribution: Maxwell
(1860) [7], Maxwell (1860) [6], Maxwell (1871) [10],
Boltzmann (1872) [11], Boltzmann (1877) [12]; Foun-
dations of statistical mechanics: Boltzmann (1877) [12],
Gibbs (1902) [17].

Foundations – Microscopic reversibility and de-
tailed balance: Origins: Tolman (1924) [19], Dirac
(1924) [20], Tolman (1925) [22], Lewis (1925) [21],
Fowler and Milne (1925) [23]. Discussion: Onsager
(1931) [26], Onsager (1931) [27], Tolman (1938) [28],
Crooks (1998) [62], Crooks (2011) [211].

Experiments:
◦ Single molecule Jarzynski: Liphardt et al. (2002) [94];
◦ single molecule fluctuation theorems: Collin et al.
(2005) [135], Ritort (2006) [149];

◦ dragged optically trapped colloid particle: Wang et al.
(2002) [95], Wang et al. (2005) [125], Wang et al.
(2005) [139];

◦ Hatano and Sasawith optically trapped colloid particle:
Trepagnier et al. (2004) [117];

◦ optically trapped colloid particle, time varying spring
constant: Carberry et al. (2004) [110], Carberry et al.
(2004) [120];

◦ colloidal particle in periodic potential: Speck et al.
(2007) [162];

◦ colloidal particle in viscoelastic media: Carberry et al.
(2007) [160];

◦ colloidal particle in time dependent non-harmonic
potential: Blickle et al. (2006) [144], Speck et al.
(2007) [162];

◦ two level system: Schuler et al. (2005) [126];
◦ turbulent flow: Ciliberto et al. (2004) [116];
◦ electric circuit: Garnier and Ciliberto (2005) [128], An-
drieux et al. (2008) [169];
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◦ mechanical oscillator: Douarche et al. (2005) [129],
Douarche et al. (2005) [137];

◦ bit erasure, colloidal particle: Bérut et al. (2012) [214];
◦ theory and discussion: Hummer and Szabo
(2001) [84].

Analytic model systems: (Model systems for which the
work distributions can be computed analytically)
◦ Harmonic potentials: Mazonka and Jarzynski
(1999) [78];

◦ two level systems: Ritort et al. (2002) [97], Ritort
(2004) [118];

◦ ideal gas compression: Lua and Grosberg (2005) [124],
Lua (2005) [142], Bena et al. (2005) [136], Pressé
and Silbey (2006) [152] and effusion: Cleuren et al.
(2006) [150];

◦ Gaussian polymer chains: Speck and Seifert
(2005) [123], Dhar (2005) [122], Imparato and Peliti
(2005) [121], Pressé and Silbey (2006) [152];

◦ Joule experiments: Cleuren et al. (2006) [143], adiabat-
ically stretched rotors: Bier (2005) [140];

◦ charged particles in magnetic fields: Jayannavar and
Sahoo (2006) [145];

◦ adiabatic compression of a dilute gas: Crooks and
Jarzynski (2007) [154];

Simulations of work distributions:
◦ double well: Sun (2003) [102]
◦ two-dimensional Ising model: Chatelain and Karevski
(2006) [147]

◦ fluctuating lattice Boltzmann model: Chari et al.
(2012) [217]

Bochkov-Kuzovlev generalized fluctuation-dissipation
theorem: Origins: Bochkov and Kuzovlev (1977) [42],
Bochkov and Kuzovlev (1979) [43], Bochkov and
Kuzovlev (1981) [44], Bochkov andKuzovlev (1981) [45].
Summary: Stratonovich (1994) [53]. Relation to Jarzyn-
ski equality and fluctuation theorems: Jarzynski
(2007) [157], Horowitz and Jarzynski (2008) [174],
Pitaevskii (2011) [207]. See also: Schurr and Fujimoto
(2003) [105]

Jarzynski equality:
◦ Origins: Jarzynski (1997) [58], Jarzynski (1997) [61],
Crooks (1998) [62].

◦ Connection to fluctuation theorems: Crooks
(1999) [74], Crooks (2000) [80], Kurchan (2007) [161].

◦ Strong coupling: Jarzynski (2004) [115].
◦ Microcanonical: Adib (2005) [127]
◦ Annealed Importance Sampling: Neal (2001) [88]

Gallavotti-Cohen Fluctuation theorem Origins:
Gallavotti and Cohen (1995) [54], Gallavotti and
Cohen (1995) [55], Gallavotti (1999) [68] Discussion:

Gallavotti (1999) [71], Cohen and Gallavotti (1999) [75],
Gallavotti (2007) [166], Kurchan (2007) [163], Gallavotti
(2019) [230] Simulations: Bonetto et al. (1998) [67]

Stochastic fluctuation theorems Kurchan (1998) [63],
Crooks (1998) [62], Lebowitz and Spohn (1999) [69],
Crooks (1999) [74], Searles and Evans (1999) [73] ra-
graphMultivariant fluctuation theorems: Garcı́a-Garcı́a
et al. (2010) [196], Garcı́a-Garcı́a et al. (2012) [213], Sivak
et al. (2013) [221]

Fluctuation theorems:
◦ Escorted fluctuation theorems: Vaikuntanathan and
Jarzynski (2011) [205]

◦ Multivariant fluctuation theorems: Garcı́a-Garcı́a et al.
(2010) [196], Garcı́a-Garcı́a et al. (2012) [213], Sivak
et al. (2013) [221]

◦ Quantum fluctuation theorems: Kurchan (2000) [82],
Mukamel (2003) [103], Jarzynski and Wójcik
(2004) [112], Monnai (2005) [133], Allahverdyan
and Nieuwenhuizen (2005) [130], De Roeck and Maes
(2006) [148], Talkner and Hänggi (2007) [158], Crooks
(2008) [170], Crooks (2008) [178], Andrieux et al.
(2009) [194], Campisi et al. (2009) [189], Campisi et al.
(2011) [209], Campisi et al. (2011) [212], Hänggi and
Talkner (2015) [227]

Excess free energy: The connection between the excess
free energy of nonequilibrium ensembles and relative en-
tropy seems to have been independently rediscovered
multiple times1. Bernstein and Levine (1972) [39] (Eqs.
44 and 54) defined an “entropy deficiency” as the rel-
ative entropy of a nonequilibrium to canonical equilib-
rium. Shaw (1984) [47] p37 states that available free
energy is the relative entropy, but without detailed dis-
cussion. Gaveau and Schulman (1997) [60] p348 notes
that the relative entropy to equilibrium state is a gener-
alized free energy, but again without much discussion.
(See also Gaveau et al. (2002) [100] and Gaveau et al.
(2008) [184].) Qian (2001) [86] provides a detailed dis-
cussion of the definition of free energy away from equi-
librium and its expression as a relative entropy. Hatano
and Sasa (2001) [87] discuss the generalization of free
energy out of equilibrium and a generalized minimum
work principle for steady states. Honerkamp (2002) [101]
(p298–301) also makes the connection between relative
energy and generalized free energy, apparently inde-
pendently. The connection between excess free energy
and reversible work is shown in Vaikuntanathan and
Jarzynski (2009) [193] using a Jarzynski equality like
argument. The instantaneous stabilization procedure
for (in principle) extracting the reversible (maximum)
work is detailed in Hasegawa et al. (2010) [198], Takara
et al. (2010) [199] and further discussed in Esposito and

1Kudos to David Sivak for tracking down many of the early citations
to relative entropy and free energy.
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Van den Broeck (2011) [210]. Further discussion and con-
sequences of this interrelation can be found in Sivak and
Crooks (2012) [216] and Deffner and Lutz (2012) [220].

Dissipation and the relative entropy between con-
jugate trajectory ensembles: A good discussion of
this relation is found in: Kawai et al. (2007) [155].
See also: Gaspard (2004) [111], Gaspard (2004) [119],
Jarzynski (2006) [146], Kawai et al. (2007) [155], Gomez-
Marin et al. (2008) [171], Andrieux et al. (2008) [169],
Feng and Crooks (2008) [173], Horowitz and Jarzynski
(2009) [187], Parrondo et al. (2009) [192], Jarzynski
(2011) [204]

Feedback control: Origins: Sagawa and Ueda
(2010) [195]; Generalized Jarzynski (Single loop
feedback): Sagawa and Ueda (2010) [195]; Experi-
ments: Toyabe et al. (2010) [200]; Multi-loop feedback:
Horowitz (2010) [202], Fujitani and Suzuki (2010) [197].

Time’s Arrow: Origin of term: Eddington (1928) [24];
Useful philosophical discussions: Price (1996) [57],
Albert (2000) [83]. Past hypothesis: Albert (2000) [83].
Length of: Feng and Crooks (2008) [173].

Work and heat The microscopic definition of work
was discussed by Gibbs (1902) [17] (Pages 42–35) and
Schrödinger (1946) [29] (See the paragraphs found be-
tween Eqs. 2.13 and 2.14). However, the importance
of this viewpoint was not appreciated until advances
in simulation and experimentation made it necessary
to carefully contemplate performing controlled pertur-
bations of single, microscopic systems. The micro-
scopic definition of work was also discussed by: Uh-
lenbeck and Ford (1963) [36], Hunter et al. (1993) [51],
Jarzynski (1997) [58], Crooks (1998) [62], Sekimoto
(1997) [59], Sekimoto (1998) [64] and further developed
in Jarzynski (1997) [61], Jarzynski (1998) [65], Crooks
(1999) [74], Hendrix and Jarzynski (2001) [89], Jarzynski
(2007) [157], Sekimoto (2010) [201]. Another clear expo-
sition with a discussion of thermodynamic consistency is
found in: Peliti (2008) [175]. See also Narayan and Dhar
(2004) [108], Imparato et al. (2007) [165].

Maxwell’s demon
◦ Origin: Maxwell (1871) [10]
◦ Szilárd engine: Szilard (1929) [25]
◦ Reviews: Leff and Rex (2003) [106]

Stochastic thermodynamics Origin of term: Van den
Broeck (1986) [49]

Free energy calculations
◦ Thermodynamic integration:
◦ Free energy perturbation: [31]

◦ Jarzynski: [58, 61, 65, 62, 89, 102]; Convergence [151,
104, 146]; Experiments [94]

◦ Crooks: [62, 74, 77, 241]; Experiments []
◦ Bennett acceptance ratio method (BAR): Origin [41];
◦ Escorted free energy simulations: [172, 205]
◦ Thermodynamic geometry and: []
◦ Reviews: [99, 167, 203, 233, 238]

Stochastic Thermodynamics and Machine Learning
◦ Diffusion Models: [? 236]

Chronological Bibliography
⋆Great papers that have been, will be, or should be influ-
ential.

[1] Thomas Young. A Course of Lectures on Natural Phi-
losophy and the Mechanical Arts, volume 2. Johnson
(1807).

◦ First use of the term ”energy” in its modern sense.
[Young1807a]

[2] Sadi Carnot. Réflexions sur la puissance motrice du feu
et sur les machines propres a développer cette puissance.
Chez Bachelier, Libraire, Paris (1824). Reflections
on the motive power of fire and machines fitted to
develop that power.

◦ Foundation of thermodynamcs. Heat engines and
Carnot efficiency. ”The driving power of heat is in-
dependent of the agents used to realize it; its value
is uniquely fixed by the temperatures of the bod-
ies between which the transfer of caloric is made”
[Carnot1824a]

[3] Émile Clapeyron. Mémoire sur la puissance
motrice de la chaleur (memoir on themotive power
of heat). Journal de l’École polytechnique, 23::153–190
(1834).

◦ Clausius-Clapeyron equation. Origin of usage ofQ
for heat. [Clapeyron1834a]

[4] Hermann von Helmholtz. Über die Erhaltung der
Kraft (On the Conservation of Force). Druck und Ver-
lag, Berlin (1847). On the Conservation of Force.

◦ Definitive statement of the conservation of en-
ergy, and thereby the first law of thermodynam-
ics. (Terminology was not yet settled: Helmholtz’s
uses the word force for what we now call energy.)
[Helmholtz1847a]

[5] William Thomson (Lord Kelvin). On the dynami-
cal theory of heat, with numerical results deduced
from Mr. Joule’s equivalent of a thermal unit, and
M. Regnault’s observations on steam. Trans. Roy.
Soc. Edin., XX (part II):261–268; 289–298 (1851).

◦ First statement of (essentially) the second law of
thermodynamics. “It is impossible, by means of
inanimate material agency, to derivemechanical ef-
fect from any portion of matter by cooling it below
the temperature of the coldest of the surrounding
objects.” [Thomson1851a]
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[6] James C. Maxwell. Illustrations of the dynamical
theory of gases. Part II. On the process of diffusion
of two or more kinds of moving particles among
one another. Phil. Mag., 20:19–32 (1860).

[7] James C. Maxwell. Illustrations of the dynamical
theory of gases. Part 1. On the motion and colli-
sion of perfectly elastic spheres. Phil. Mag., 19:19–
32 (1860).

[8] Rudolf Clausius. Ueber verschiedene für die an-
wendung bequeme formen der hauptgleichungen
der mechanischen wärmetheorie. Annalen der
Physik und Chemie, 201(7):353–400 (1865). doi:10.
1002/andp.18652010702.

◦ Introduction of the term entropy, and statement
of Clausius’s form of the second law of thermo-
dynamics. Quote: “We now seek an appropriate
name for S . . . .We would call S the transformation
content of the body. However I have felt it more
suitable to take names of important scientific quan-
tities from the ancient languages in order that they
may appear unchanged in all contemporary lan-
guages. Hence I propose that we call S the entropy
of the body after Greek word . . .meaning “transfor-
mation”. I have intentionally formed the word en-
tropy to be as similar as possible to the word en-
ergy, since the two quantities that are given these
names are so closely related in their physical sig-
nificance that a certain likeness in their names has
seemed appropriate.” The paper concludes with
concise statements of the First and Second Laws of
thermodynamics: “1. The energy of the universe is
a constant. 2) The entropy of the universe tends to
a maximum.” [Clausius1865a]

[9] Rudolf Clausius. On the second fundamental theo-
rem of the mechanical theory of heat; a lecture de-
livered before the forty-firstmeeting of theGerman
Scientific Association, at Frankfort on the Maine.
Philos. Mag. Ser. 4, 35(239):405–419 (1868).

[10] James C. Maxwell. Theory of heat. Appleton, Lon-
don (1871).

◦ Invocation of Maxwell’s demon. [Maxwell1871a]

[11] Ludwig Boltzmann. Weitere studien über das
Wärmegleichgewicht unter Gasmolekülen (Fur-
ther studies on the thermal equilibrium of gas
molecules). Sitzungsberichte Akad. Wiss., Vienna,
part II, 66:275–370 (1872).

◦ The Boltzmann equation and Boltzmann’s H-
theorem. Statistical definition of entropy, Eq
7. Boltzmann’s derivation of the Mazwell-
Boltzmann velocity distribution. First paper
on non-equilibrium thermodynamics. [Boltz-
mann1872a]

[12] Ludwig Boltzmann. Über die beziehung swis-
chen dem zweiten hauptsatz der mechanischen
wärmetheorie und der wahrscheinlichkeit-
srechnung respektive den sätzen über des
wärmegleichgewicht (on the relation between
the second law of thermodynamics and proba-
bility theory with respect to the laws of thermal

equilibrium). Wien. Ber., 76:373–435(1877); W. A.
Band II, p.164–223 (1877).

◦ Entropy argued to be statistical and defiend via
probabilities (33). Argue that at equilibrium all
possible microscopic states of an isolated sys-
tem are equally probable (which leads to the
S = k lnW formula for entropy engraved on his
tombstone). [Boltzmann1877a]

[13] Hermann vonHelmholtz. Physical memoirs, selected
and translated from foreign sources, volume 1, chap-
ter On the Thermodynamics of Chemical Processes
(1882), pages 43–97. Taylor & Francis (1888).

◦ Definiton and explication of free energy, “Given
the unlimited validity of Clausius’ law, it would
then be the value of the free energy, not that of the
total energy resulting from heat production, which
determines inwhich sense the chemical affinity can
be active.” [Helmholtz1882a]

[14] Ludwig Boltzmann. Vorlesungen über Gastheorie
(Lectures on gas theory), volume I. J. A. Barth (1896).
Translated in [37].

[15] Ludwig Boltzmann. Vorlesungen über Gastheorie
(Lectures on gas theory), volume II. J. A. Barth (1898).
Translated in [37].

[16] Max Planck. Ueber das gesetz der energiev-
erteilung im normalspektrum (on the law of dis-
tribution of energy in the normal spectrum). An-
nalen der Physik, 309(3):553–563 (1901). doi:10.
1002/andp.19013090310.

[17] J. Willard Gibbs. Elementary principles in statisti-
cal mechanics. Charles Scribner’s Sons, New York
(1902).

◦ Genesis and foundation of modern statistical me-
chanics. Nonstandard notations: energy: ϵ; tem-
perature: θ; free energy: ψ; index of probability:
ν ≡ lnpx; entropy: −ν̄. Canonical ensemble (91).
Statistical definition of entropy (111) p44. Second
law expressed as an average work inequality (481).
[Gibbs1902a]

[18] Max Planck. Treatise on Thermodynamics. Long-
mans, Green, and Co., 3rd edition (1910).

[19] Richard C. Tolman. Duration of molecules in up-
per quantum states. Phys. Rev., 23:693–709 (1924).
doi:10.1103/PhysRev.23.69.

◦ Genesis of “The principle of microscopic reversibil-
ity” (p699). Quote: “This assumption should be
recognized as a distinct postulate and might be
called the principle of microscopic reversibility.- In
the case of a system in thermodynamic equilib-
rium, the principle would require not only that the
total number ofmolecules leaving a given quantum
state in unit time shall equal-the number arriving
in that state in unit time, but also the the number
leaving by any one particular path shall be equal to
the number arriving by the reverse of that particu-
lar path.” [Tolman1924a]
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[20] Paul A. M. Dirac. The conditions for statistical
equilibrium between atoms, electrons and radia-
tion. Proc. R. Soc. Lond. A, 106:581–596 (1924).

◦ Definition and discussion of the “Principle of De-
tailed Balance”. [Dirac1924a]

[21] Gilbert N. Lewis. A new principle of equilibrium.
Proc. Natl. Acad. Sci. U.S.A., 11(3):179–183 (1925).

◦ Quote: “Corresponding to every individual pro-
cess there is a reverse process, and in a state of
equilibrium the average rate of every process is
equal to the average rate of its reverse process.”
[Lewis1925a]

[22] Richard C. Tolman. The principle of microscopic
reversibility. Proc. Natl. Acad. Sci. U.S.A., 11(7):436–
439 (1925).

◦ Historical commentary on The Principle of Micro-
scopic Reversibility. [Tolman1925a]

[23] Ralph H. Fowler and E. A. Milne. A note on the
principle of detailed balancing. Proc. Natl. Acad. Sci.
U.S.A., 11:400–402 (1925).

[24] Arthur S. Eddington. The nature of the physical world.
Cambridge University Press, Cambridge (1928).

◦ Origin of the phrase ”Time’s Arrow”. [Edding-
ton1928a]

[25] L. Szilard. Úber die entropieverminderung in
einem thermodynamischen system bei eingriffen
intelligenter wesen (on the reduction of entropy in
a thermodynamic system by the intervention of in-
telligent beings). Z. Phys., 53:840–856 (1929). doi:
10.1007/BF01341281.

[26] Lars Onsager. Reciprocal relations in irreversible
processes. I. Phys. Rev., 37(4):405–426 (1931). doi:
10.1103/PhysRev.37.405.

◦⋆ Origin of Onsager’s reciprocal relations. Detailed
discussion of microscopic reversibility. For experi-
mental verification, see [34]. [Onsager1931a]

[27] Lars Onsager. Reciprocal relations in irreversible
processes. II. Phys. Rev., 38(12):2265–2279 (1931).
doi:10.1103/PhysRev.38.2265.

◦⋆ Onsager regression hypothesis: “...the average re-
gression of fluctuations will obey the same laws
as the corresponding macroscopic irreversible pro-
cess”. [Onsager1931b]

[28] Richard C. Tolman. The principles of statistical me-
chanics. Oxford University Press, London (1938).

◦ Comparison of the principles of detailed balance
and microscopic reversibility (pp. 163 and 165).
[Tolman1938a]

[29] Erwin Schrödinger. Statistical Thermodynamics.
Cambridge University Press, Cambridge (1946).

[30] Claude E. Shannon. Amathematical theory of com-
munication. Bell Syst. Tech. J., 27:379–423, 623–656
(1948). doi:10.1002/j.1538-7305.1948.tb01338.x.

◦⋆ Foundation of information theory. Latter reprinted
in book form with the subtle change in title

“The Mathematical Theory of Communication”.
Entropy; mutual information; channel coding theo-
rem; first use ofword ‘bit’ in print. [Shannon1948a]

[31] Robert W. Zwanzig. High-temperature equation of
state by a perturbation method: I. Nonpolar gases.
J. Chem. Phys., 22:1420–1426 (1954). doi:10.1063/1.
1740409.

◦ This is the standard citation for free energy per-
turbation, although the method predates this pa-
per. This may be becasue it was the oldest paper
on thermodynamic perturbation referenced in [41].
[Zwanzig1954a]

[32] Edwin T. Jaynes. Information theory and statistical
mechanics II. Phys. Rev., 108:171–190 (1957). doi:
10.1103/PhysRev.108.171.

[33] Edwin T. Jaynes. Information theory and statistical
mechanics. Phys. Rev., 106:620–630 (1957). doi:10.
1103/PhysRev.106.620.

[34] Donald G. Miller. Thermodynamics of irreversible
processes. The experimental verification of the On-
sager reciprocal relations. Chem. Rev., 60:15–37
(1960). doi:10.1021/cr60203a003.

[35] Rolf Landauer. Irreversibility and heat generation
in the computing process. IBM J. Res. Develop.,
5(3):183–191 (1961). doi:10.1147/rd.53.0183.

◦⋆ Genesis of Landauer’s principle: It requires at least
kBT ln 2 (About 3× 10−21 Joules at 300K) to erase 1
bit of information. [Landauer1961a]

[36] George E. Uhlenbeck and GeorgeW. Ford. Lectures
in Statistical Mechanics. AmericanMathematical So-
ciety (1963).

[37] Ludwig Boltzmann. Lectures on gas theory. Univ. of
Calif. Press (1964). Translation of [14] and [15].

[38] Tomoji Yamada and Kyozi Kawasaki. Nonlinear ef-
fects in shear viscosity of critical mixtures. Prog.
Theor. Phys., 38(5):1031–1051 (1967). doi:10.1143/
PTP.38.1031.

◦ Original reference for the Kawasaki response func-
tion. [Yamada1967a]

[39] R. B. Bernstein and R. D. Levine. Entropy and
chemical change. I. Characterization of product
(and reactant) energy distributions in reactive
molecular collisions: Information and entropy de-
ficiency. J. Chem. Phys., 57(1):434–449 (1972). doi:
10.1063/1.1677983.

[40] J. Schnakenberg. Network theory of microscopic
and macroscopic behavior of master equation sys-
tems. Rev. Mod. Phys., 48(4):571–585 (1976). doi:
10.1103/RevModPhys.48.571.

◦⋆ Microscopic expression for average entropy pro-
duction rate (7.6), for continuous timeMarkov pro-
cesses. [Schnakenberg1976a]

[41] Charles H. Bennett. Efficient estimation of free
energy differences from Monte Carlo data. J.
Comput. Phys., 22(1):245–268 (1976). doi:10.1016/
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0021-9991(76)90078-4.
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[352] G. Adjanor, M. Athènes, and F. Calco. Free energy
landscape from path-sampling: application to the
structural transition in LJ38. Eur. Phys. J. B, 53:47–60
(2006). doi:10.1140/epjb/e2006-00353-0.

[353] F. Douarche, S. Joubaud, N. B. Garnier, A. Pet-
rosyan, and Sergio Ciliberto. Work fluctuation the-
orems for harmonic oscillators. Phys. Rev. Lett.,
97(14):140603 (2006). doi:10.1103/PhysRevLett.97.
140603.

[354] Piero Procacci, Simone Marsili, Alessandro Bar-
ducci, G. F. Signorini, and Riccardo Chelli. Crooks
equation for steered molecular dynamics using
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